Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Online Anomaly Detection (OAD) is critical for identifying rare yet important data points in large, dynamic, and complex data streams. A key challenge lies in achieving accurate and consistent detection of anomalies while maintaining computational and memory efficiency. Conventional OAD approaches, which depend on distributional deviations and static thresholds, struggle with model update delays and catastrophic forgetting, leading to missed detections and high false positive rates. To address these limitations, we propose a novel Streaming Anomaly Detection (SAD) method, grounded in a sparse active online learning framework. Our approach uniquely integrates ℓ1,2-norm sparse online learning with CUR decomposition-based active learning, enabling simultaneous fast feature selection and dynamic instance selection. The efficient CUR decomposition further supports real-time residual analysis for anomaly scoring, eliminating the need for manual threshold settings about temporal data distributions. Extensive experiments on diverse streaming datasets demonstrate SAD's superiority, achieving a 14.06% reduction in detection error rates compared to five state-of-the-art competitors.more » « lessFree, publicly-accessible full text available September 1, 2026
- 
            Group Fairness-aware Continual Learning (GFCL) aims to eradicate discriminatory predictions against certain demographic groups in a sequence of diverse learning tasks.This paper explores an even more challenging GFCL problem – how to sustain a fair classifier across a sequence of tasks with covariate shifts and unlabeled data. We propose the MacFRL solution, with its key idea to optimizethe sequence of learning tasks. We hypothesize that high-confident learning can be enabled in the optimized task sequence, where the classifier learns from a set of prioritized tasks to glean knowledge, thereby becoming more capable to handle the tasks with substantial distribution shifts that were originally deferred. Theoretical and empirical studies substantiate that MacFRL excels among its GFCL competitors in terms of prediction accuracy and group fair-ness metrics.more » « lessFree, publicly-accessible full text available April 11, 2026
- 
            Free, publicly-accessible full text available February 25, 2026
- 
            Free, publicly-accessible full text available December 15, 2025
- 
            Free, publicly-accessible full text available October 1, 2026
- 
            Taking incompatible multiple drugs together may cause adverse interactions and side effects on the body. Accurate prediction of drug-drug interaction (DDI) events is essential for avoiding this issue. Recently, various artificial intelligence-based approaches have been proposed for predicting DDI events. However, DDI events are associated with complex relationships and mechanisms among drugs, targets, enzymes, transporters, molecular structures, etc. Existing approaches either partially or loosely consider these relationships and mechanisms by a non-end-to-end learning framework, resulting in sub-optimal feature extractions and fusions for prediction. Different from them, this paper proposes a Multimodal Knowledge Graph Fused End-to-end Neural Network (MKGFENN) that consists of two main parts: multimodal knowledge graph (MKG) and fused end-to-end neural network (FENN). First, MKG is constructed by comprehensively exploiting DDI events-associated relationships and mechanisms from four knowledge graphs of drugs-chemical entities, drug-substructures, drugs-drugs, and molecular structures. Correspondingly, a four channels graph neural network is designed to extract high-order and semantic features from MKG. Second, FENN designs a multi-layer perceptron to fuse the extracted features by end-to-end learning. With such designs, the feature extractions and fusions of DDI events are guaranteed to be comprehensive and optimal for prediction. Through extensive experiments on real drug datasets, we demonstrate that MKG-FENN exhibits high accuracy and significantly outperforms state-of-the-art models in predicting DDI events. The source code and supplementary file of this article are available on: https://github.com/wudi1989/MKG-FENN.more » « less
- 
            Sparse online learning has received extensive attention during the past few years. Most of existing algorithms that utilize ℓ1-norm regularization or ℓ1-ball projection assume that the feature space is fixed or changes by following explicit constraints. However, this assumption does not always hold in many real applications. Motivated by this observation, we propose a new online learning algorithm tailored for data streams described by open feature spaces, where new features can be occurred, and old features may be vanished over various time spans. Our algorithm named RSOL provides a strategy to adapt quickly to such feature dynamics by encouraging sparse model representation with an ℓ1- and ℓ2-mixed regularizer. We leverage the proximal operator of the ℓ1,2-mixed norm and show that our RSOL algorithm enjoys a closed-form solution at each iteration. A sub-linear regret bound of our proposed algorithm is guaranteed with a solid theoretical analysis. Empirical results benchmarked on nine streaming datasets validate the effectiveness of the proposed RSOL method over three state-of-the-art algorithms. Keywords: online learning, sparse learning, streaming feature selection, open feature spaces, ℓ1,2 mixed normmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available